Elasticity

* Strain: i) longitudinal, \[\varepsilon_L = \frac{\Delta L}{L} \]

[\text{N}_0 \text{L}_0 ^{-1} \text{T}^{-2}] ii) Shearing strain, \[\varepsilon_\theta = \tan \theta = \frac{\Delta \theta}{L} \]

iii) Volume strain, \[\varepsilon_V = \frac{\Delta V}{V} \]

* Stress: Restoring force/unit area [ML^{-1}T^{-2}]

(a second rank tensor quantity, not a vector).

i) tensile \\ & compressive stress,

ii) shearing stress, iii) volume stress.

* Poisson's Ratio: \(\sigma \), within elastic limit & at constant temperature lateral \\ & longitudinal strain are found to be proportional.

\(0.25 < \sigma < 0.5 \) \[\sigma = -\frac{\Delta D/D}{\Delta L/L} \] lateral/longitudinal.

* Hooke's Law: Within elastic limit & at constant temperature, stress \\ & strain. \(\Rightarrow \) stress = \text{Stress} \cdot \text{strain}, \text{Stress} is called modulus of elasticity.

* Moduluses of elasticity:

i) Young's Modulus: \[Y = \frac{F/A}{\Delta L/L} = \frac{FL}{A \cdot \Delta L} \]

ii) Shear Modulus or Modulus of Rigidity:

\[G = \frac{F/A}{\theta} = \frac{F}{A \theta} \]

iii) Bulk Modulus: \[K = -\frac{P}{\Delta V/V} = -V \frac{P}{\Delta V} \]

\(\theta \) compressibility, \(C = \frac{1}{K} = -\frac{1}{V} \frac{\Delta V}{P} \).

* Two kinds (any) of strain always occur together.
Important Relations:

1. \(Y = 3K (1 - 2\sigma) \), \(2n (1 + \sigma) = Y \)
 (Here, \(\frac{1}{2} > \sigma > -1 \), theoretical).

2. \(\sigma = \frac{3K - 2n}{2n + 6K} \)
 \(\frac{dV}{V} = 2 \frac{dD}{D} + \frac{dL}{L} = (1 - 2\sigma) \frac{dL}{L} \).

3. \(\frac{1}{K} + \frac{3}{n} = \frac{\sigma}{Y} \)

Spring & Hooke's Law: \(F = -kx \)

Equivalent \(K \):

a) Series: \(\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2} \)

b) Parallel: \(K = K_1 + K_2 \)

c) \(K' = 2K \)

Elastic Strain Energy: \(Q = \frac{YA L^2}{2L} = \frac{YA (AL)^2}{2L} \)

Elastic energy per unit volume, \(q = \frac{Y (AL)^2}{2L^2} \)

\(q = \frac{1}{2} \times \text{stress} \times \text{strain} = \frac{1}{2} \times \frac{F}{A} \times \frac{\Delta L}{L} \)

(Valid for all kinds of strain).

Stress - Strain Relation:

A → Proportional limit
L → Elastic limit \((L \sim \beta) \)
B → Yield point
C → Tensile strength
D → Fracture point.

OB → Elastic deformation BC → Plastic deformation.

For glass, time to regain its shape after removing stress is quite large. For quartz, phosphor-bronze alloy, silver, gold, this time is too short, hence used for suspension fibres.
Elasticity:

- Elastic hysteresis: (exhibited by vulcanised rubber).
- Non coincidence of forward & backward curves.
- Loss of energy during the whole process as the area of hysteresis loop.
- Materials having large elastic hysteresis are used as vibration absorbers.

- Elastic fatigue: Tiredness after alternating strains, difficult to continue vibrations.

- Perfect rigid - diamond
- Perfect elastic - good quality steel.
- Liquid has no shearing elasticity.

- Elasticity of Gases.
- Isothermal bulk modulus \((K_T) \), \(K_T = \rho \) - pressure of the gas.
- Adiabatic bulk modulus \((K_S) \), \(K_S = \rho^\kappa \).

- Change of density when pressure \(\Delta p \) applied:
 \[
 \rho' = \frac{\rho}{1 - \frac{\Delta p}{K}}
 \]