Work, Energy, Power

* Work: \(W = \int_{a}^{b} F \cdot ds \) [in some definition, \(ds \) should be infinitesimal small].

When \(W \) is +ve, the work is done by the force. When \(W \) is -ve, the work is done against the force.

* No-work force: \(W = \int F \cdot ds \cos 90^\circ = 0 \)

* Work done by a couple: \(W = \int \tau \cdot d\theta \)

* \(E_k = \frac{1}{2} mv^2 \); \(P = \sqrt{2mE_k} \)

* Work-Energy Theorem: The change in kinetic energy of a body is equal to the work done on it by the resultant force acting on it.

* Power, \(P = \frac{dW}{dt} \).

* \(P = (F \cdot ds)/dt = F \cdot \vec{v} \)

* Principle of Minimum Potential Energy: In all spontaneous motion, potential energy of a body always decreases.

* When force is applied on a body, which is placed above another body, the work done by the resultant force on the lower body is positive.

* Work done, changes with frame of reference.

* 1 amu = \(1.67 \times 10^{-27} \) kg = 931 MeV

* \(F(x) = -\frac{dU(x)}{dx} \)

1 kg = \(9 \times 10^{-16} J \) = \(1.6 \times 10^{-10} \) (by \(E = mc^2 \)).

In thermo-couple heat to electrical energy transformation occurs.

Types of Equilibrium:
1) Stable: \(f = -\frac{dU}{dx} = 0 \) \& \(\frac{d^2U}{dx^2} = +ve \).
2) Unstable: \(f = -\frac{dU}{dx} = 0 \) \& \(\frac{d^2U}{dx^2} = -ve \).
3) Neutral: \(f = -\frac{dU}{dx} = 0 \) \& \(\frac{d^2U}{dx^2} = 0 \).

If a chain of length \(L \) & mass \(M \) is held on a frictionless table with \((\frac{1}{n})^{th} \) of length hanging over the edge, work done on pulling the chain against gravity = \(\frac{MgL}{2n^2} \).

Velocity of chain while leaving the table = \(\sqrt{gL(1-\frac{1}{n^2})} \).

1 watt = 1 J/s = 10^7 erg/s.
1 hp = 746 watt. 1 kw hr = \(3.6 \times 10^6 \) J.

Position \& velocity of an automobile with time, while the engine supplies constant power \(P \).
\(v = \left(2P/t/m \right)^{1/2} \)
\(s = \left(\frac{8p}{9m} \right)^{1/2} + \frac{3}{2} \)